问题
填空题
用数学归纳法证明:“1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,n∈N+”,当n=1时,左端为______.
答案
在等式:“1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,n∈N+”中,
当n=1时,3n+1=4,
而等式左边起始为1×4的连续的正整数积的和,
故n=1时,等式左端=1×4=4
故答案为:4.
用数学归纳法证明:“1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,n∈N+”,当n=1时,左端为______.
在等式:“1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,n∈N+”中,
当n=1时,3n+1=4,
而等式左边起始为1×4的连续的正整数积的和,
故n=1时,等式左端=1×4=4
故答案为:4.