问题
填空题
已知:a2+4a+1=0,且
|
答案
∵a2+4a+1=0,∴a2=-4a-1,
=a4+ma2+1 2a3+ma2+2a (-4a-1)2+ma2+1 2a(-4a-1)+ma2+2a
=(16+m)a2+8a+2 (m-8)a2
=(16+m)(-4a-1)+8a+2 (m-8)(-4a-1)
=
=3(-56-4m)a-14-m (-4m+32)a-m+8
即(-56-4m)a-14-m=(-12m+96)a-3m+24,
∴-56-4m=-12m+96,-14-m=-3m+24,
解得m=19.
故答案为19.