问题 填空题
已知:a2+4a+1=0,且
a4+ma2+1
2a3+ma2+2a
=3,则m的值为______.
答案

∵a2+4a+1=0,∴a2=-4a-1,

a4+ma2+1
2a3+ma2+2a
=
(-4a-1)2+ma2+1
2a(-4a-1)+ma2+2a

=

(16+m)a2+8a+2
(m-8)a2

=

(16+m)(-4a-1)+8a+2
(m-8)(-4a-1)

=

(-56-4m)a-14-m
(-4m+32)a-m+8
=3

即(-56-4m)a-14-m=(-12m+96)a-3m+24,

∴-56-4m=-12m+96,-14-m=-3m+24,

解得m=19.

故答案为19.

判断题
单项选择题