问题
解答题
用数学归纳法证明:(n+1)+(n+2)+…+(n+n)=
|
答案
证明:①n=1时,左边=2,右边=2,等式成立;
②假设n=k时,结论成立,即:(k+1)+(k+2)+…+(k+k)=k(3k+1) 2
则n=k+1时,等式左边=(k+2)+(k+3)+…+(k+k+1)+(k+1+k+1)=
+3k+2=k(3k+1) 2 (k+1)(3k+4) 2
故n=k+1时,等式成立
由①②可知:(n+1)+(n+2)+…+(n+n)=
(n∈N*)成立n(3n+1) 2