问题
选择题
a,b,c均不为0,若
|
答案
∵abc<0.
∴a,b,c中至少有一个是负数,另两个同号,
可知三个都是负数或两正数,一个是负数,
当三个都是负数时:若
=abc,则x-y=a2bc>0,即x>y,同理可得:y>z,z>x这三个式子不能同时成立,即a,b,c不能同时是负数.则P(ab,bc)不可能在第一象限.x-y a
故选A.
a,b,c均不为0,若
|
∵abc<0.
∴a,b,c中至少有一个是负数,另两个同号,
可知三个都是负数或两正数,一个是负数,
当三个都是负数时:若
=abc,则x-y=a2bc>0,即x>y,同理可得:y>z,z>x这三个式子不能同时成立,即a,b,c不能同时是负数.则P(ab,bc)不可能在第一象限.x-y a
故选A.