问题 解答题
n≥2(n∈N*)时,Sn=(1-
1
4
)(1-
1
9
)(1-
1
16
)…(1-
1
n2
),  Tn=
n+1
2n

(1)求S2,S3,T2,T3;(2)猜测Sn与Tn的关系且证明.
答案

(1)S2=1-

1
4
=
3
4
S3=(1-
1
4
)(1-
1
9
)=
2
3

T2=
2+1
2×2
=
3
4
T3=
3+1
2×3
=
2
3

(2)猜想:Sn=Tn,用数学归纳法证明,

①n=2时,由(1)知成立;

②假设n=k(k≥2,k∈N)时等式处立.

即(1-
1
4
)(1-
1
9
)(1-
1
16
)…(1-
1
k2
)=
k+1
2k
,则n=k+1时,
Sk+1=(1-
1
4
)(1-
1
9
)(1-
1
16
)…(1-
1
k2
)[1-
1
(k+1)2
]

=
k+1
2k
•[1-
1
(k+1)2
]=
(k+1)2-1
2k(k+1)
=
(k+1)+1
2(k+1)

所以n=k+1时,等式成立,

由①②可知对于n≥2,n∈N猜想成立.

选择题
单项选择题