问题
解答题
已知数列
|
答案
观察分析题设条件可知Sn=
(n∈N)(2n+1)2-1 (2n+1)2
证明如下:(1)当n=1时,S1=
=32-1 32
,等式成立.8 9
(Ⅱ)设当n=k时等式成立,即Sk=
.则Sk+1=Sk+(2k+1)2-1 (2k+1)2
=8(k+1) (2k+1)2(2k+3)2
+(2k+1)2-1 (2k+1)2
=8(k+1) (2k+1)2(2k+3)2
=[(2k+1)2-1](2k+3)2+8(k+1) (2k+1)2(2k+3)2
=(2k+1)2(2k+3)2-(2k+3)2+8(k+1) (2k+1)2(2k+3)2
=(2k+1)2(2k+3)2-(2k+1)2 (2k+1)2(2k+3)2
=(2k+3)2-1 (2k+3)2 [2(k+1)+1]2-1 [2(k+1)+1]2
由此可知,当n=k+1时等式也成立.根据(1)(2)可知,等式对任何n∈N都成立