问题
填空题
数学归纳法证明(n+1)+(n+2)+…+(n+n)=
|
答案
由题意,n=k时,则(k+1)+(k+2)+…+(k+k)=k(3k+1) 2
当n=k+1时,左边=(k+1+1)+(k+1+2)+…+(k+1+k-1)+(k+1+k)+(k+1+k+1)
=(k+2)+(k+3)+…+(k+k)+(k+1+k)+(k+1+k+1)
=(k+1)+(k+2)+(k+3)+…+(k+k)+(k+1+k)+(k+1+k+1)-(k+1)
=
+3k+2k(3k+1) 2
∴当n=k+1时等式左边与n=k时等式左边的差等于3k+2
故答案为 3k+2