问题 填空题
数学归纳法证明(n+1)+(n+2)+…+(n+n)=
n(3n+1)
2
的第二步中,当n=k+1时等式左边与n=k时等式左边的差等于______.
答案

由题意,n=k时,则(k+1)+(k+2)+…+(k+k)=

k(3k+1)
2

当n=k+1时,左边=(k+1+1)+(k+1+2)+…+(k+1+k-1)+(k+1+k)+(k+1+k+1)

=(k+2)+(k+3)+…+(k+k)+(k+1+k)+(k+1+k+1)

=(k+1)+(k+2)+(k+3)+…+(k+k)+(k+1+k)+(k+1+k+1)-(k+1)

=

k(3k+1)
2
+3k+2

∴当n=k+1时等式左边与n=k时等式左边的差等于3k+2

故答案为 3k+2

填空题
问答题 简答题