问题
解答题
数列{an}满足a1=3,an+1=4-
(1)计算a2,a3,a4,并由此猜想通项公式an; (2)用数学归纳法证明(1)的猜想. |
答案
(1)∵a1=3=
,an+1=4-6 2
,4 an
∴a2=4-
=4-4 a1
=4 3
;8 3
a3=4-
=4(1-4 a2
)=3 8
,10 4
a4=4(1-
)=4(1-1 a3
)=4 10
.12 5
由此猜想通项公式an=
;2n+4 n+1
(2)下面用数学归纳法证明an=
.2n+4 n+1
证明:1°当n=1时,a1=
=3,等式成立;6 2
2°假设n=k时,ak=
,2k+4 k+1
则n=k+1时,
ak+1=4-4 ak
=4(1-
)1 ak
=4(1-
)k+1 2k+4
=4×k+3 2k+4
=2k+6 k+2
=
,即n=k+1时等式也成立.2(k+1)+4 (k+1)+1
综合1°,2°知,对任意正整数n,an=
.2n+4 n+1