问题 解答题
数列{an}满足a1=3,an+1=4-
4
an

(1)计算a2,a3,a4,并由此猜想通项公式an
(2)用数学归纳法证明(1)的猜想.
答案

(1)∵a1=3=

6
2
,an+1=4-
4
an

∴a2=4-

4
a1
=4-
4
3
=
8
3

a3=4-

4
a2
=4(1-
3
8
)=
10
4

a4=4(1-

1
a3
)=4(1-
4
10
)=
12
5

由此猜想通项公式an=

2n+4
n+1

(2)下面用数学归纳法证明an=

2n+4
n+1

证明:1°当n=1时,a1=

6
2
=3,等式成立;

2°假设n=k时,ak=

2k+4
k+1

则n=k+1时,

ak+1=4-

4
ak

=4(1-

1
ak

=4(1-

k+1
2k+4

=4×

k+3
2k+4

=

2k+6
k+2

=

2(k+1)+4
(k+1)+1
,即n=k+1时等式也成立.

综合1°,2°知,对任意正整数n,an=

2n+4
n+1

填空题
问答题 简答题