问题 解答题
已知正项数列{an}中,Sn是其前n项的和,且2Sn=an+
1
an
,n∈N+
(Ⅰ)计算出a1,a2,a3,然后猜想数列{an}的通项公式;
(Ⅱ)用数学归纳法证明你的猜想.
答案

(I)由于2Sn=an+

1
an
Sn=
1
2
(an+
1
an
)

当n=1时,a1=

1
2
(a1+
1
a1
),可得a1=1,

当n=2时,a1+a2=

1
2
(a2+
1
a2
),可得a2=
2
-1
(an>0),

当n=3时,a1+a2+a3=

1
2
(a3+
1
a3
),可得a3=
3
-
2
(an>0),

猜想:an=

n
-
n-1
(n∈N+

(II)证明:(1)当n=1时,已证.

(2)假设n=k(k≥1)时,ak=

k
-
k-1
成立,则当n=k+1时,ak+1=Sk+1-Sk=
1
2
(ak+1+
1
ak+1
)-
1
2
(ak+
1
ak
)

ak+1-

1
ak+1
=-(ak+
1
ak
)=-(
k
-
k-1
+
1
k
-
k-1
)=-2
k

ak+1=

k+1
-
k

由(1)(2)可知对n∈N+an=

n
-
n-1
成立.

改错题
问答题 简答题