问题 解答题
用数学归纳法证明等式cos
x
2
•cos
x
22
•cos
x
23
•…cos
x
2n
=
sinx
2nsin
x
2n
对一切自然数n都成立.
答案

①当n=1时,cos

x
2
=
sinx
2 sin
x
2 

②假设当n=k时,等式成立,即cos

x
2
•cos
x
22
•cos
x
23
•…cos
x
2k
=
sinx
2ksin
x
2k

则当n=k+1时,

cos

x
2
•cos
x
22
•cos
x
23
•…cos
x
2k
•cos
x
2k+1

=

sinx
2ksin
x
2k
cos
x
2k+1

=

sinx
2k•2•sin
x
2k+1
cos
x
2k+1
cos
x
2k+1
=
sinx
2nsin
x
2k+1

即此时等式也成立,

故等式cos

x
2
•cos
x
22
•cos
x
23
•…cos
x
2n
=
sinx
2nsin
x
2n
对一切自然数n都成立.

填空题
填空题