问题
解答题
用数学归纳法证明等式cos
|
答案
①当n=1时,cos
=x 2 sinx 2 sin x 2
②假设当n=k时,等式成立,即cos
•cosx 2
•cosx 22
•…cosx 23
=x 2k sinx 2ksin x 2k
则当n=k+1时,
cos
•cosx 2
•cosx 22
•…cosx 23
•cosx 2k x 2k+1
=
•cossinx 2ksin x 2k x 2k+1
=
•cossinx 2k•2•sin
cosx 2k+1 x 2k+1
=x 2k+1 sinx 2nsin x 2k+1
即此时等式也成立,
故等式cos
•cosx 2
•cosx 22
•…cosx 23
=x 2n
对一切自然数n都成立.sinx 2nsin x 2n