问题 解答题
本题满分16分)两个数列{an},{bn},满足bn=
a1+2a2+3a3+…+nan
1+2+3+…+n
.★(参考公式1+22+32+…+n2=
n(n+1)(2n+1)
6

求证:{bn}为等差数列的充要条件是{an}为等差数列.
答案

证明:∵bn=

a1+2a2+3a3+…+nan
1+2+3+…+n
,∴bn+1=
a1+2a2+3a3+…+nan+(n+1)an
1+2+3+…+n+(n+1)

n(n+1)
2
bn=a1+2a2+3a3+…+nan ①,

(n+1)(n+2)
2
bn+1=a1+2a2+3a3+…+nan+(n+1)an+1.②

②减去①可得

(n+1)(n+2)
2
bn+1-
n(n+1)
2
bn=(n+1)an+1

两边同时除以n+1可得

n+2
2
bn+1-
n
2
bn=an+1 ③,

n+1
2
bn-
n-1
2
bn-1=an  ④.

③减去④可得 an+1 -an=(

n+2
2
 bn+1 -
n+1
2
 bn )-(
n
2
 bn -
n-1
2
bn-1

=

n
2
bn+1 +bn+1 -
n
2
bn-
1
2
bn-
n
2
bn+
n
2
 bn-1-
1
2
bn-1 

=

n
2
(bn+1-bn )+
1
2
(bn+1-bn )+
1
2
 (bn-bn-1)-
n
2
(bn-bn-1

=

n+1
2
(bn+1-bn )+
1
2
(bn+1-bn )-
n-1
2
(bn-bn-1).

由于{bn}为等差数列的充要条件是 bn+1-bn=bn-bn-1=常数d,

此时an+1 -an=

n+1
2
d+
1
2
d
-
n-1
2
d
=
3
2
d
,是个常数.

故:{bn}为等差数列的充要条件是{an}为等差数列.

单项选择题
单项选择题