本题满分16分)两个数列{an},{bn},满足bn=
求证:{bn}为等差数列的充要条件是{an}为等差数列. |
证明:∵bn=
,∴bn+1=a1+2a2+3a3+…+nan 1+2+3+…+n
,a1+2a2+3a3+…+nan+(n+1)an 1+2+3+…+n+(n+1)
∴
bn=a1+2a2+3a3+…+nan ①,n(n+1) 2
bn+1=a1+2a2+3a3+…+nan+(n+1)an+1.②(n+1)(n+2) 2
②减去①可得
bn+1-(n+1)(n+2) 2
bn=(n+1)an+1.n(n+1) 2
两边同时除以n+1可得
bn+1-n+2 2
bn=an+1 ③,n 2
∴
bn-n+1 2
bn-1=an ④.n-1 2
③减去④可得 an+1 -an=(
bn+1 -n+2 2
bn )-(n+1 2
bn -n 2
bn-1 )n-1 2
=
bn+1 +bn+1 -n 2
bn-n 2
bn-1 2
bn+n 2
bn-1-n 2
bn-1 1 2
=
(bn+1-bn )+n 2
(bn+1-bn )+1 2
(bn-bn-1)-1 2
(bn-bn-1)n 2
=
(bn+1-bn )+n+1 2
(bn+1-bn )-1 2
(bn-bn-1).n-1 2
由于{bn}为等差数列的充要条件是 bn+1-bn=bn-bn-1=常数d,
此时an+1 -an=
d+n+1 2
d-1 2
d=n-1 2
d,是个常数.3 2
故:{bn}为等差数列的充要条件是{an}为等差数列.