问题 填空题

在解析几何里,圆心在点(x0,y0),半径是r(r>0)的圆的标准方程是(x-x02+(y-y02=r2.类比圆的标准方程,研究对称轴平行于坐标轴的椭圆的标准方程,可以得出的正确结论是:“设椭圆的中心在点(x0,y0),焦点在直线y=y0上,长半轴长为a,短半轴长为b(a>b>0),其标准方程为______.

答案

在由圆的性质类比圆的性质时,一般地,由圆的标准方程,类比推理椭圆的标准方程;由圆的几何性质,

故由:“圆心在点(x0,y0),半径是r(r>0)的圆的标准方程是(x-x02+(y-y02=r2”,

类比到椭圆可得的结论是:

设椭圆的中心在点(x0,y0),焦点在直线y=y0上,长半轴长为a,短半轴长为b(a>b>0),其标准方程为

(x-x0)2
a2
+
(y-y0)2
b2
=1.

故答案为:

(x-x0)2
a2
+
(y-y0)2
b2
=1.

单项选择题
单项选择题