问题 解答题
在计算“1×2+2×3+…n(n+1)”时,先改写第k项:
k(k+1)=
1
3
[k(k+1)(k+2)-(k-1)k(k+1)],由此得1×2=
1
3
(1×2×3-0×1×2),2×3=
1
3
(2×3×4-1×2×3),..
n(n+1)=
1
3
[n(n+1)(n+2)-(n-1)n(n+1)],相加,得1×2+2×3+…+n(n+1)=
1
3
n(n+1)(n+2)

(1)类比上述方法,请你计算“1×2×3+2×3×4+…+n(n+1)(n+2)”的结果;
(2)试用数学归纳法证明你得到的等式.
答案

(1)∵n(n+1)(n+2)=

1
4
[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]

∴1×2×3=

1
4
(1×2×3×4-0×1×2×3)

2×3×4=

1
4
(2×3×4×5-1×2×3×4)

n(n+1)(n+2)=

1
4
[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]

∴1×2×3+2×3×4+…+n(n+1)(n+2)=

1
4
[(1×2×3×4-0×1×2×3)+(2×3×4×5-1×2×3×4)+…+n×(n+1)×(n+2)×(n+3)-(n-1)×n×(n+1)×(n+2)=
1
4
n(n+1)(n+2)(n+3)

(2)利用数学归纳法证:1×2×3+2×3×4+…+n(n+1)(n+2)=

1
4
n(n+1)(n+2)(n+3)

①当n=1时,左边=1×2×3,右边=

1
4
×1×2×3×4=1×2×3,左边=右边,等式成立.

②设当n=k(k∈N*)时,等式成立,

即1×2×3+2×3×4+…+k×(k+1)×(k+2)=

k(k+1)(k+2)(k+3)
4
.  

则当n=k+1时,

左边=1×2×3+2×3×4+…+k×(k+1)×(k+2)+(k+1)(k+2)(k+3)

=

k(k+1)(k+2)(k+3)
4
+(k+1)(k+2)(k+3)

=(k+1)(k+2)(k+3)(

k
4
+1)

=

(k+1)(k+2)(k+3)(K+4)
4

=

(k+1)(k+1+1)(k+1+2)(k+1+3)
4

∴n=k+1时,等式成立.

由①、②可知,原等式对于任意n∈N*成立.

单项选择题
单项选择题