问题
解答题
在计算“1×2+2×3+…n(n+1)”时,先改写第k项: k(k+1)=
n(n+1)=
(1)类比上述方法,请你计算“1×2×3+2×3×4+…+n(n+1)(n+2)”的结果; (2)试用数学归纳法证明你得到的等式. |
答案
(1)∵n(n+1)(n+2)=
[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]1 4
∴1×2×3=
(1×2×3×4-0×1×2×3)1 4
2×3×4=
(2×3×4×5-1×2×3×4)1 4
…
n(n+1)(n+2)=
[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]1 4
∴1×2×3+2×3×4+…+n(n+1)(n+2)=
[(1×2×3×4-0×1×2×3)+(2×3×4×5-1×2×3×4)+…+n×(n+1)×(n+2)×(n+3)-(n-1)×n×(n+1)×(n+2)=1 4
n(n+1)(n+2)(n+3)1 4
(2)利用数学归纳法证:1×2×3+2×3×4+…+n(n+1)(n+2)=
n(n+1)(n+2)(n+3)1 4
①当n=1时,左边=1×2×3,右边=
×1×2×3×4=1×2×3,左边=右边,等式成立.1 4
②设当n=k(k∈N*)时,等式成立,
即1×2×3+2×3×4+…+k×(k+1)×(k+2)=
. k(k+1)(k+2)(k+3) 4
则当n=k+1时,
左边=1×2×3+2×3×4+…+k×(k+1)×(k+2)+(k+1)(k+2)(k+3)
=
+(k+1)(k+2)(k+3)k(k+1)(k+2)(k+3) 4
=(k+1)(k+2)(k+3)(
+1)k 4
=(k+1)(k+2)(k+3)(K+4) 4
=
.(k+1)(k+1+1)(k+1+2)(k+1+3) 4
∴n=k+1时,等式成立.
由①、②可知,原等式对于任意n∈N*成立.