问题
填空题
圆x2+y2=r2在点(x0,y0)处的切线方程为x0x+y0y=r2,类似的,可以求得椭圆
|
答案
圆x2+y2=r2的方程,可写成x•x+y•y=r2,在点(x0,y0)处的切线方程为x0x+y0y=r2,
类似地,椭圆
+x2 8
=1,可写成y2 2
+x•x 8
=1,在点(x0,y0)处的切线方程为y•y 2
+x0•x 8
=1y0•y 2
∴椭圆
+x2 8
=1在(2,1)处的切线方程为y2 2
+2x 8
=1y 2
即
+x 4
=1y 2
故答案为:
+x 4
=1y 2