问题 填空题

若函数式f(n)表示n2+1(n∈N*)的各位上的数字之和,如142+1=197,1+9+7=17,所以F(14)=17,记f1(n)=f(n),f2(n)=f[f1(n)]…,fk+1(n)=f[fk(n)],k∈N*,则f2009(17)=______.

答案

由172+1=290⇒f(17)=2+9+0=11,
112+1=122⇒f(11)=1+2+2=5,
52+1=26⇒f(5)=8
82+1=65⇒f(8)=11
112+1=122⇒f(11)=5
…⇒fn(17)是从第一项起以3为周期的循环数列,
又2009÷3的余数为2,故f2009(17)=f2(17)=f(11)=5.

故答案为:5.

解答题
单项选择题