将正整数2,3,4,5,6,7,…,n,…作如下分类:(2),(3,4),(5,6,7),(8,9,10,11),…,分别计算各组包含的正整数的和,记为S1,S2,S3,S4,…,记Tn=S1+S3+S5+…+S2n-1.
(1)分别求T1,T2,T3的值;
(2)请猜测Tn的结果,并用数学归纳法证明.
(1)第n组有n个从小到大连续的正整数,且第1个数是[1+2+3+…+(n-1)]+2=
+2,n(n-1) 2
故Sn=n[
+2]+n(n-1) 2
=n(n-1) 2
+2(n∈N*).n(n2+3) 2
S1=2,S3=18,S5=70,T1=S1=2,
T2=S1+S3=2+18=20,
T3=S1+S3+S5=2+18+70=90.…(6分)
(2)由(1)知T1=2=1×2=12×(12+1),
T2=20=4×5=22×(22+1),
T3=90=9×10=32×(32+1)
猜想:Tn=n2(n2+1),(n∈N*). …(10分)
证明:(ⅰ)当n=1时,已知成立.
(ⅱ)假设n=k(k∈N*)时,猜测成立,即Tk=k2(k2+1).则n=k+1时,
Tk+1=Tk+S2k+1=k2(k2+1)+
,(2k+1)[(2k+1)2+3] 2
因为(k+1)2[(k+1)2+1]-k2(k2+1)-(2k+1)[(2k+1)2+3] 2
=[(k+1)4-k4]+[(k+1)2-k2]-(2k+1)(4k2+4k+4] 2
=[(k+1)2+k2][(k+1)2-k2]+(2k+1)-(2k+1)(2k2+2k+2)
=(2k+1)(2k2+2k+2)-(2k+1)(2k2+2k+2)
=0,
所以k2(k2+1)+
=(k+1)2[(k+1)2+1],即n=k+1时,猜测成立.(2k+1)[(2k+1)2+3] 2
根据(ⅰ)(ⅱ),Tn=n2(n2+1)(n∈N*)成立. …(16分)