问题
填空题
已知,a2+3a-1=0,b4-3b2-1=0,且1-ab2≠0,则(
|
答案
将a2+3a-1=0,b4-3b2-1=0两式相减得:a2-b4+3a+3b2=0,分解因式得:(a+b2)(a-b2+3)=0,
若a-b2+3=0,则1-ab2=1-a(a+3)=-(a2+3a-1)=0,而已知1-ab2≠0,所以a+b2+3=0不成立,
则a+b2=0
∴a=-b2,
将a=-b2代入代数式
=ab2+ b2+1 a
=-a2-a+1 a
=3a-1-a+1 a
=2.2a a
则(
)5=25=32.ab2+b2+1 a
故本题答案为:32.