问题 解答题

某商场计划拨款9万元从厂家购进50台电视机.已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.

(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请研究一下商场的进货方案;

(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售时获利最多,你选择哪种进货方案;

(3)若商场准备用9万元同时购进三种不同的电视机50台,请你设计进货方案.

答案

解:(1)设购进甲种x台,乙种y台.

则有:

解得

设购进乙种x台,丙种y台.

则有:

解得;(不合题意,舍去此方案)

设购进甲种x台,丙种y台.

则有:

解得

通过列方程组解得有以下两种方案成立:

①甲、乙两种型号的电视机各购25台.

②甲种型号的电视机购35台,丙种型号的电视机购15台;

(2)方案①获利为:25×150+25×200=8750;

方案②获利为:35×150+15×250=9000(元).

所以为使销售时获利最多,应选择第②种进货方案;

(3)设购进甲种电视x台,乙种电视y台,则购进丙种电视的数量为:z=(50﹣x﹣y)台.

1500x+2100y+2500(50﹣x﹣y)=90000,

化简整理,得5x+2y=175.

又因为0<x、y、z<50,且均为整数,

所以上述二元一次方程只有四组解:

x=27,y=20,z=3;

x=29,y=15,z=6;

x=31,y=10,z=9;

x=33,y=5,z=12.

因此,有四种进货方案:

1、购进甲种电视27台,乙种电视20台,丙种电视3台,

2、购进甲种电视29台,乙种电视15台,丙种电视6台,

3、购进甲种电视31台,乙种电视10台,丙种电视9台,

4、购进甲种电视33台,乙种电视5台,丙种电视12台.

单项选择题
单项选择题