问题
填空题
方程x3-
|
答案
原方程变形得:
x3-(
1) x2+x2-(23+
+1) x+3+3
=03
x2[x-(
+1)] +[x-(3
1)] (x-3+
)=03
[x-(
)][x2+x-3+1
]=03
即x-(
1) =0或x2+x-3+
=03
解得:x1=
+1,x2,3=3
.-1± 1+4 3 2
方程x3-
|
原方程变形得:
x3-(
1) x2+x2-(23+
+1) x+3+3
=03
x2[x-(
+1)] +[x-(3
1)] (x-3+
)=03
[x-(
)][x2+x-3+1
]=03
即x-(
1) =0或x2+x-3+
=03
解得:x1=
+1,x2,3=3
.-1± 1+4 3 2