问题 解答题
(1)解方程:
x-3
x+1
+
x+1
x-3
=
5
2

(2)解方程组:
x2+y2=5
2x2-3xy-2y2=0
答案

(1)设

x-3
x+1
=y,

则原方程化为y+

1
y
=
5
2

去分母得 2y2-5y+2=0,

解得:y1=2,y2=

1
2

当y1=2时,

x-3
x+1
=2,

x-3
x+1
=4,

解得:x1=-

7
3

当y2=

1
2
时,
x-3
x+1
=
1
2

x-3
x+1
=
1
4

解得:x2=

13
3

经检验x1=-

7
3
,x2=
13
3
都是原方程的解.

(2)

x2+y2=5①
2x2-3xy-2y2=0②

由②得(2x+y)(x-2y)=0.

2x+y=0,x-2y=0,

y=-2x,x=2y,

将y=-2x代入①得:5x2=5,

解得:x1=1,x2=-1,

即y1=-2,y2=2,

把x=2y代入①得:5y2=5,

解得:y3=1,y4=-1,

即x3=2,x4=-2,

即原方程组的解为:

x1=1
y1=-2
x2=-1
y2=2
x3=2
y3=1
x4=-2
y4=-1

填空题
单项选择题