问题 填空题

已知x2+x+1=0,求值:x8+x4+1=______.

答案

∵x2-x+1=0

∴x2=-x-1,

∴x8+x4+1=x4(x4+1)+1

=(x22[(x22+1]+1

=(-x-1)2[(-x-1)2+1]+1

=(x2+2x+1)[(x2+2x+1)+1]+1

=(x+0)(0+x+1)+1

=(x)(x+1)+1

=x2+x+1

=0.

故答案为0.

单项选择题
单项选择题