问题
填空题
定义映射f:A→B,其中A={(m,n)|m,n∈R},B=R,已知对所有的有序正整数对(m,n)满足下述条件:
①f(m,1)=1,②若n>m,f(m,n)=0;③f(m+1,n)=n[f(m,n)+f(m,n-1)],则f(2,2)= ;f(n,2)= .
答案
2 2n-2
根据已知得,f(1,2)=0=21-2,
f(2,2)=f(1+1,2)=2[f(1,2)+f(1,1)]=2f(1,1)
=2×1=2,
f(3,2)=f(2+1,2)=2[f(2,2)+f(2,1)]=2×(2+1)
=6=23-2,
f(4,2)=f(3+1,2)=2[f(3,2)+f(3,1)]=2×(6+1)
=14=24-2,
f(5,2)=f(4+1,2)=2[f(4,2)+f(4,1)]=2×(14+1)
=30=25-2,
所以根据归纳推理可知f(n,2)=2n-2.