问题 选择题

若x+y=-1,则x4+5x3y+x2y+8x2y2+xy2+5xy3+y4的值等于(  )

A.0

B.-1

C.1

D.3

答案

原式=x4+x3y+4x3y+x2y+4x2y2+4x2y2+xy2+4xy3+xy3+y4

=x3(x+y)+4x2y(x+y)+xy(x+y)+4xy2(x+y)+y3(x+y),

=-x3-4x2y-xy-4xy2-y3

=-[(x3+y3)+4xy(x+y)+xy],

=-[(x+y)(x2-xy+y2)-4xy+xy],

=-[-(x2-xy+y2)-3xy],

=(x2-xy+y2)+3xy,

=(x+y)2-3xy+3xy,

=1.

故选C.

单项选择题
单项选择题