问题
填空题
若(3x+1)5=ax5+bx4+cx3+dx2+ex+f,则a+c+e=______.
答案
∵(3x+1)5=ax5+bx4+cx3+dx2+ex+f,
令x=-1,有-32=-a+b-c+d-e+f①
令x=1,有1024=a+b+c+d+e+f②
由②-①有:1056=2a+2c+2e,
即:528=a+c+e.
若(3x+1)5=ax5+bx4+cx3+dx2+ex+f,则a+c+e=______.
∵(3x+1)5=ax5+bx4+cx3+dx2+ex+f,
令x=-1,有-32=-a+b-c+d-e+f①
令x=1,有1024=a+b+c+d+e+f②
由②-①有:1056=2a+2c+2e,
即:528=a+c+e.